273 research outputs found

    A method for vibration-based structural interrogation and health monitoring based on signal cross-correlation

    Get PDF
    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam

    A method for vibration-based structural interrogation and health monitoring based on signal cross-correlation

    Get PDF
    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam

    Modern Modal Testing: A Cautionary Tale

    Get PDF
    Over the past 50 years, great advances have been achieved in both analytical modal analysis (i.e. finite element models and analysis) and experimental modal analysis (i.e. modal testing) in aerospace and other fields. With the advent of more powerful computers, higher performance instrumentation and data acquisition systems, and powerful linear modal extraction tools, analysts and test engineers have a breadth and depth of technical resources only dreamed of by our predecessors. However, some observed recent trends indicate that hard lessons learned are being forgotten or ignored, and possibly fundamental concepts are not being understood. These trends have the potential of leading to the degradation of the quality of and confidence in both analytical and test results. These trends are a making of our own doing, and directly related to having ever more powerful computers, programmatic budgetary pressures to limit analysis and testing, and technical capital loss due to the retirement of the senior component of a bimodal workforce. This paper endeavors to highlight some of the most important lessons learned, common pitfalls to hopefully avoid, and potential steps that may be taken to help reverse this trend

    Representativity error for temperature and humidity using the Met Office high-resolution model

    Get PDF
    The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland

    Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement (ADFP) and its effects on permeability

    Get PDF
    Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been introduced into the aerospace industry. Typically, the permeability of the reinforcement is assumed to be constant throughout the dry preform geometry whereas in reality it possesses inevitable uncertainty due to variability in geometry. This uncertainty propagates to the uncertainty of the mould filling and the fill time, one of the important variables in resin injection. It makes characterisation of the permeability and its variability an important task for design of the resin transfer moulding process. In this study, variability of the geometry of a reinforcement manufactured using Automated Dry Fibre Placement is studied. Permeability of the manufactured preforms is measured experimentally and compared to stochastic simulations based on an analytical model and a stochastic geometry model. The simulations showed that difference between the actual geometry and the designed geometry can result in 50% reduction of the permeability. The stochastic geometry model predicts results within 20% of the experimental values

    Pulse Echo Technique to Determine Bondline Reflection Coefficients

    Full text link
    Using reflection coefficients to obtain bond strengths and other bondline characteristics has been proposed by previous researchers(1,2). For configurations where the bondline of interest is well separated from the specimen surface and adjacent boundaries, measuring the reflection coefficient using broadband, pulse-echo, ultrasound can be done by processing the bondline echo taken directly from the A-scan. For configurations where the bondline is close to a parallel surface however, reverberations in the layer between the bondline and surface will cause successive bondline echoes to overlap in the A-scan, so that individual echoes can not be processed to determine the reflection coefficient directly. This paper presents a technique for processing the A-scan to obtain the desired reflection coefficient for the case when the bondline is near a surface

    An improved critical plane and cycle counting method to assess damage under variable amplitude multiaxial fatigue loading

    Get PDF
    The plane with the maximum variance of the resolved shear stress is taken as the critical plane. Two algorithms are used along with the maximum variance method (MVM) to determine the orientation of the critical plane. The maximum variance of the normal stress on the potential critical planes is calculated to determine the one experiencing the maximum extent of fatigue damage. A new multiaxial cycle counting method is proposed to count cycles on the critical plane. The modified Wöhler curve method is used to assess fatigue damage. About 200 experimental results were collected from the technical literature to validate the approaches being proposed. The results show that the improved design technique being proposed is successful in assessing fatigue damage under variable amplitude multiaxial cyclic loading

    Image-based tracking technique assessment and application to a fluid-structure interaction experiment

    Get PDF
    This work analyses the accuracy and capabilities of two image-based tracking techniques related to digital image correlation and the Lucas–Kanade optical flow method, with the subsequent quantification of body motion in a fluid–structure interaction experiment. A computer-controlled shaker was used as a benchmark case to create a one-dimensional oscillatory target motion. Three target frequencies were recorded. The measurements obtained with a low-cost digital camera were compared to a high-precision motion tracking system. The comparison was performed under changes in image resolution, target motion and sampling frequency. The results show that, with a correct selection of the processing parameters, both tracking techniques were able to track the main motion and frequency of the target even after a reduction of four and five times the sampling frequency and image resolution, respectively. Within this good agreement, the Lucas–Kanade technique shows better accuracy under tested conditions, achieving up to 15.6% of lower tracking error. Nevertheless, the achievement of this higher accuracy is highly dependent on the position of the selected initial target point. These considerations are addressed to satisfactorily track the response of a wall-mounted cylinder subjected to a range of turbulent flows using a single camera as the measuring device

    Behavior of granite-epoxy composite beams subjected to mechanical vibrations

    Get PDF
    The capacity to damp mechanical vibrations is one of the most important properties of granite-epoxy composites, even superior to the cast iron one. For this reason, these materials have been adopted for manufacturing of tool machine foundations and precision instruments. This work presents a study concerning the behavior of particulate composite beams, based on granite powder and epoxy, subjected to mechanical vibrations. Composite samples were prepared with different combinations of processing variables, like the weight fraction of epoxy in the mixture and size distributions of granite particles. The damping behavior of the material was investigated adopting the logarithmic decrement method. Samples, in the form of prismatic beams, were excited in the middle point and the output signal was measured in a point located at the extremity. The obtained results showed that composite samples, with weight fractions of about 80% of granite and 20% of epoxy, presented damping properties approximately three times greater than gray cast iron

    Neuronal Variability during Handwriting: Lognormal Distribution

    Get PDF
    We examined time-dependent statistical properties of electromyographic (EMG) signals recorded from intrinsic hand muscles during handwriting. Our analysis showed that trial-to-trial neuronal variability of EMG signals is well described by the lognormal distribution clearly distinguished from the Gaussian (normal) distribution. This finding indicates that EMG formation cannot be described by a conventional model where the signal is normally distributed because it is composed by summation of many random sources. We found that the variability of temporal parameters of handwriting - handwriting duration and response time - is also well described by a lognormal distribution. Although, the exact mechanism of lognormal statistics remains an open question, the results obtained should significantly impact experimental research, theoretical modeling and bioengineering applications of motor networks. In particular, our results suggest that accounting for lognormal distribution of EMGs can improve biomimetic systems that strive to reproduce EMG signals in artificial actuators
    • …
    corecore